Кобальтовая бомба: страшная и несуществующая

Кому это выгодно?

Насколько известно, официально ни одно государство не имеет радиологического оружия. Оно невыгодно для традиционных войн: «грязная бомба» не позволяет уничтожать врага мгновенно, как другие виды оружия, ее эффект растянут во времени, кроме того, на долгие годы она делает территорию непригодной для захвата и использования — и даже для ввода войск. В качестве оружия сдерживания «грязная бомба» тоже не лучший вариант, когда есть ракеты с ядерными боеголовками.

Однако, в то время как «грязная бомба» не подходит ни для «горячего», ни для «холодного» вооруженного противостояния, она вполне годится для группировок, ведущих войны нетрадиционными методами, в первую очередь террористических. Радиологическое оружие позволяет наносить максимальный урон мирному населению — следовательно, это идеальное средство устрашения. 11 сентября 2001 года во время крупнейшего теракта под руинами «башен-близнецов» погибли без малого 3000 человек. Если бы в том же самом месте взорвалась средней мощности «грязная бомба» — счет пострадавших пошел бы на миллионы. Канал National Geographic снял 40-минутный видеофильм, демонстрирующий последствия гипотетического взрыва небольшой америциево-стронциевой «грязной бомбы» посреди американского городка — там наглядно смоделированы последствия подобного взрыва.

Еще одно сомнительное преимущество такого вида оружия — его доступность. В одной из публикаций на эту тему «грязную бомбу» неверно, но очень метко назвали «атомной бомбой для бедных». Всего восемь стран мира имеют ядерное вооружение. Для того чтобы сделать настоящую атомную бомбу, нужны ресурсы, которые есть только у развитых государств: исследовательские лаборатории, высокотехнологичное производство, наконец, оружейный уран или плутоний, которые так просто не достанешь. «Грязную» же бомбу можно изготовить буквально «на коленке». Радиоактивные изотопы сейчас применяются весьма широко: в промышленности и энергетике, в медицине, в науке и даже в быту (например, детекторы дыма часто делаются на основе америция-241), поэтому при желании добыть достаточное для изготовления бомбы количество радиоактивных веществ не составляет проблемы. Не случайно в ходе боевых действий США на Ближнем Востоке и в лагерях чеченских боевиков, как пишет пресса, не раз находили чертежи «грязных бомб» (впрочем, последнее может быть и «уткой»).

Есть и еще один неприятный сценарий, аналогичный по эффекту использованию радиологического оружия: террористический акт с обыкновенным взрывом на атомной электростанции.

Сегодня, когда опасность террористических актов высока, людям необходимо знать, что происходит и как следует себя вести при взрывах, в том числе при взрывах «грязных бомб». Видимо, тут стоит адресовать читателей к фильму National Geographic, который так и называется — «Грязная бомба» (Dirty Bomb). И хотя фильм демонстрирует действия американской системы гражданской обороны, российский зритель также может почерпнуть из него немало полезной информации.

&nbsp-

&nbsp-

Осколочные боеприпасы — принцип действия и виды

Военные, усмотрев в действии отдельных боеприпасов определенные факторы, натолкнули военных инженеров на мысль, снабдить обычный боеприпас, артиллерийский снаряд или ручную бомбу, дополнительными элементами. При разрыве снаряда эти элементы, получив огромный импульс кинетической энергии, разлетались от места взрыва на определенное расстояние. Другими словами, к фугасности, которая является обычным явлением для любого взрывчатого вещества, добавился другой поражающий компонент, фактор осколочного действия. Соответственно увеличилась зона поражения такого боезаряда. Выше уже было сказано, что первыми видами боеприпасов осколочного действия была шрапнель, снаряд, начиненный пулями, которые разлетались в момент взрыва.


Шрапнель

В дальнейшем осколочные боеприпасы (ОБП) получили большее распространение ввиду большого разнообразия конструкций. Это и стало одной из причин массового перехода практически всех видов вооружений, где используются взрывчатые вещества на осколочные и осколочно-фугасные боеприпасы. В зависимости от принципа действия и конструкции осколочных боеприпасов изменился их способ доставки, значительно расширился круг боевых задач. Несмотря на то, что этот вид боеприпасов официально не имеет классификации, их принято разделять по следующим критериям:

  • по способу доставки к цели;
  • по типу и размерам поражаемой цели;
  • по форме и конфигурации осколочного поля;
  • по поражающим элементам (форма и способ формирования).


Осколочные гранаты Отличатся этот вид боеприпасов и по типу поражаемой цели. На данный момент в боевых условиях основным средством противодействия являются многоцелевые боеприпасы, осколочно-фугасного действия. Это, как правило, артиллерийские гаубичные снаряды, минометные мины, авиационные бомбы. Специализированные боеприпасы используются для борьбы с целями определенного плана. К таким боеприпасам относятся:

  • противопехотные мины;
  • противотранспортные мины;
  • кассетные авиабомбы;
  • ручные гранаты различного действия.

Гаубичные снаряды, минометные мины и авиационные мины рассчитаны главным образом на поражение живой силы. Во время взрыва такого боеприпаса в большом количестве образуются осколки, крупные и мелкие, разлетающиеся на значительное расстояние. При взрыве единичного заряда осколочного действия зона поражения может варьироваться в диапазоне 150-300 м. Применение шариковых или кассетных снарядов за счет использования многочисленных зарядов, зона поражения увеличивается в несколько раз, достигая площади в 1-2 га.


Кассетная бомба

Таблица изотопов кобальта

Символ нуклида Z(p)N(n)Масса изотопа (а. е. м.) Период полураспада(T1/2) Спин и чётность ядра
Энергия возбуждения
47Co272047,011497/2-
48Co272148,001766+
49Co272248,9897235 нс7/2-
50Co272349,9815444 мс6+
51Co272450,9707260 мс7/2-
52Co272551,96359115 мс6+
52mCo380 кэВ104 мс2+
53Co272652,954219242 мс7/2-
53mCo3,197 МэВ247 мс19/2-
54Co272753,9484596193,28 мс0+
54mCo197,4 кэВ1,48 мин7+
55Co272854,941999017,53 ч7/2-
56Co272955,939839377,233 сут4+
57Co273056,9362914271,74 сут7/2-
58Co273157,935752870,86 сут2+
58m1Co24,95 кэВ9,04 ч5+
58m2Co53,15 кэВ10,4 мкс4+
59Co273258,9331950 стабилен7/2-
60Co273359,93381715,2713 г.5+
60mCo58,59 кэВ10,467 мин2+
61Co273460,93247581,650 ч7/2-
62Co273561,9340511,50 мин2+
62mCo22 кэВ13,91 мин5+
63Co273662,93361226,9 с7/2-
64Co273763,935810300 мс1+
65Co273864,9364781,20 с7/2-
66Co273965,93976180 мс3+
66m1Co175 кэВ1,21 мкс5+
66m2Co642 кэВ100 мкс8-
67Co274066,94089425 мс7/2-
68Co274167,94487199 мс7-
68mCo150 кэВ1,6 с3+
69Co274268,94632227 мс7/2-
70Co274369,9510119 мс6-
70mCo200 кэВ500 мс3+
71Co274470,952997 мс7/2-
72Co274571,9578162 мс6-
73Co274672,9602441 мс7/2-
74Co274773,9653850 мс0+
75Co274874,9683340 мс7/2-
76Co2749> 634 нс

Принцип действия боеприпасов объемного взрыва

Вакуумные бомбы или боеприпасы объемного взрыва (или объемно-детонирующие боеприпасы) – это тип боеприпасов, который работает на принципе создания объемного взрыва, известного человечеству уже многие сотни лет.

Человек очень давно познакомился с явлением объемного взрыва. Подобные взрывы довольно часто случались на мукомольных производствах, где в воздухе скапливалась мельчайшая мучная пыль или на сахарных заводах. Еще большую опасность представляют собой подобные взрывы в угольных шахтах. Объемные взрывы являются одной из самых страшных опасностей, которые подстерегают шахтеров под землей. В плохо вентилируемых забоях скапливается угольная пыль и газ метан. Для инициации мощнейшего взрыва в таких условиях достаточно даже небольшой искры.

Типичным примером объемного взрыва является подрыв бытового газа в помещении.

Физический принцип действия, по которому работает вакуумная бомба, довольно прост. Обычно в нем используют взрывчатое вещество с низкой температурой кипения, которое легко переходит в газообразное состояние даже при низких температурах (например, окись ацетилена). Для создания искусственного объемного взрыва нужно просто создать облако из смеси воздуха и горючего материала и поджечь его. Но просто это только в теории – на практике этот процесс довольно сложен.

В центре боеприпаса объемного взрыва находится небольшой подрывной заряд, состоящий из обычного взрывчатого вещества (ВВ). В его функции входит распыление основного заряда, который быстро превращается в газ или аэрозоль и вступает в реакцию с кислородом воздуха. Именно последний играет роль окислителя, поэтому вакуумная бомба в несколько раз мощнее обычной, имеющей такую же массу.

Задачей подрывного заряда является равномерное распределение горючего газа или аэрозоля в пространстве. Затем в дело вступает второй заряд, который вызывает детонацию этого облака. Иногда используют несколько зарядов. Задержка между срабатываниями двух зарядов меньше одной секунды (150 мск).

Название «вакуумная бомба» не совсем точно отображает принцип действия этого оружия. Да, после подрыва подобной бомбы действительно происходит снижение давления, но ни о каком вакууме речь не идет. Вообще, боеприпасы объемного взрыва уже породили большое количество мифов.

В качестве взрывчатого вещества в объемных боеприпасах обычно используют различные жидкости (окиси этилена и пропилена, диметилацетилен, пропилнитрит), а также порошки легких металлов (чаще всего магний).

Как бомба, только торпеда

Как и все объекты подобного рода, Новоземельский полигон получил условное наименование «объект 700». В соответствии с этим индексом было дано название и строительной организации, которой поручили возведение всей необходимой инфраструктуры новой испытательной площадки: «Спецстрой-700». В его состав вошли тринадцать строительных батальонов, которые прибыли на Новую Землю летом 1954 года. А 17 сентября того же года Генеральный штаб ВМФ СССР издал директиву о формировании управления полигона, так что с той поры эта дата отмечается как день рождения полигона. Новый объект подчинили созданному 5 апреля 1954 года 6-му Управлению ВМФ, которое руководило системой обеспечения флота ядерным оружием. Начальником Управления стал контр-адмирал Петр Фомин. А первым начальником Новоземельского полигона назначили опытного подводника Героя Советского Союза капитана первого ранга Валентина Старикова.

Строительство нового полигона шло в большой спешке. Прошло уже шесть лет с тех пор, как США провели на атолле Бикини надводный и подводный ядерные взрывы, и существовал немалый риск, что американский флот первым получит морское ядерное оружие – глубинные бомбы и торпеды. Советские специалисты приступили к созданию собственной торпеды с ядерным зарядом сразу после того, как выбрали место для нового полигона. Получившуюся у них торпеду Т-5 нужно было где-то испытывать.

Первые испытания, во время которых в Советском Союзе был впервые произведен подводный ядерный взрыв, прошли на Новой Земле 21 сентября 1955 года. Местом для них выбрали так называемую «зону А» – Черную Губу. В ней разместили десять кораблей: четыре подводные лодки в подводном положении и на перископной глубине, четверку эсминцев и два тральщика. Корабли стояли на расстоянии от 300 до 1800 метров от тральщика Т-293, с борта которого специальными лебедками ядерный заряд опустили на глубину в 12 метров. В восемь часов утра прогремел взрыв, поднявший характерный гриб и погнавший от эпицентра большие кольцевые волны. Однако из кораблей, участвовавших в испытании, затонул только один – эсминец «Реут», стоявший ближе всего к тральщику Т-293. Остальные получили повреждения разной степени тяжести, но остались на плаву.

Второй подводный ядерный взрыв на полигоне Новая Земля произвели 10 октября 1957 года, и это были уже государственные испытания торпеды Т-5. Она была выпущена подводной лодкой С-144 с расстояния в 10 км, а ее специальная боевая часть сработала на глубине 35 метров. Мощность взрыва составила 10 килотонн, и из десяти кораблей-мишеней шесть были потоплены на месте. Через год после этого торпеду Т-5 приняли на вооружение, но прослужила она недолго: проще и лучше оказалось выпускать специальные боевые части для обычных торпед, которые отличались куда большей надежностью.

Химические реакции при взрыве

Во время взрыва происходит обильное облучение этой кобальтовой оболочки нейтронным потоком. После этого осуществляется следующая химическая реакция. Захват нейтрона сопровождается тем, что стабильное ядро природного химического элемента перевоплощается в кобальт-60, который является радиоактивным изотопом.

Нужно заметить, что время, необходимое для полураспада получившегося изотопа, исчисляется пятью годами и несколькими месяцами. После бета-распада полученного нуклида появляется никель-60. Последний находится в возбужденном состоянии, а через определенный промежуток времени сменяется на основное состояние, сопровождающееся исходом одного либо нескольких гамма-квантов.

По своим характеристикам один грамм кобальта-60 приравнивается к 41,8 ТБк или 1130 Ки. Для того чтобы подвергнуть заражению всю поверхность планеты, достаточно всего 510 тысяч тонн этого вещества. При этом данный расчет производился с учетом того, что один грамм потребовался бы для заражения одного квадратного километра.

Дополнительная информация

Существует информация о том, что во времена существования Советского Союза группа под руководством знаменитого академика и ученого Сахарова А.Д. выступила перед генеральным секретарем компартии Хрущёвым Н.С. с инициативой создания ракеты с кобальтовой оболочкой. Такая кобальтовая бомба, фото которой вряд ли можно найти в открытых источниках, содержала бы огромное количество дейтерия, и при ее взрыве у берегов Соединенных Штатов все население этой страны бы погибло.

Источником такой информации послужил Негин Е.А., имевший звание генерал-полковника, служивший во время правления Хрущёва.

Виды поражающего действия радиации.

Радиация разрушает ткани тела. Поглощенная доза излучения – это энергетическая величина, измеряемая в радах (1 рад = 0,01 Дж/кг) для всех видов проникающего излучения. Разные виды излучения оказывают разное действие на организм человека. Поэтому экспозиционная доза рентгеновского и гамма-излучения измеряется в рентгенах (1Р = 2,58×10–4 Кл/кг). Вред, нанесенный человеческой ткани поглощением радиации, оценивается в единицах эквивалентной дозы излучения – бэрах (бэр – биологический эквивалент рентгена). Чтобы вычислить дозу в рентгенах, необходимо дозу в радах умножить на т.н. относительную биологическую эффективность рассматриваемого вида проникающей радиации. Все люди на протяжении своей жизни поглощают некоторое природное (фоновое) проникающее излучение, а многие – искусственное, например рентгеновское. Человеческий организм, по-видимому, справляется с таким уровнем облучения. Вредные же последствия наблюдаются тогда, когда либо полная накопленная доза слишком велика, либо облучение произошло за короткое время. (Правда, доза, полученная в результате равномерного облучения на протяжении более длительного времени, тоже может приводить к тяжелым последствиям.) Как правило, полученная доза облучения не приводит к немедленному поражению. Даже летальные дозы могут в течение часа и более никак не сказываться. Ожидаемые результаты облучения (всего тела) человека разными дозами проникающей радиации представлены в табл. 2. Таблица 2. Биологическая реакция людей на проникающую радиацию

Таблица 2. БИОЛОГИЧЕСКАЯ РЕАКЦИЯ ЛЮДЕЙ НА ПРОНИКАЮЩУЮ РАДИАЦИЮ
Номинальная доза, радПоявление первых симптомовСнижение боеспособностиГоспитализация и дальнейшее протекание
0–70В пределах 6 ч легкие случаи проходящей головной боли и тошноты – до 5% группы в верхней части диапазона дозы.Нет.Госпитализация не требуется. Работоспособность сохраняется.
70–150В пределах 3–6 ч проходящая слабая головная боль и тошнота. Слабая рвота – до 50% группы.Небольшое снижение способности выполнять свои обязанности у 25% группы. До 5% могут быть небоеспособ-ными.Возможна госпитализация (20–30 сут) менее чем 5% в верхней части диапазона дозы. Возвращение в строй, летальные исходы крайне маловероятны.
150–450В пределах 3 ч головная боль, тошнота и слабость. Легкие случаи поноса. Рвота – до 50% группы.Сохраняется способность выполнять простые задачи. Способность выполнять боевые и сложные задачи может быть снижена. Свыше 5% небоеспособных в нижней части диапазона дозы (больше – с увеличением дозы).Показана госпитализация (30–90 сут) после латентного периода 10–30 сут. Смертельные исходы (от 5% и менее до 50% в верхней части диапазона дозы). При наибольших дозах возвращение в строй маловероятно.
450–800В пределах 1 ч сильная тошнота и рвота. Понос, лихорадочное состояние в верхней части диапазона.Сохраняется способность выполнять простые задачи. Значительное снижение боеспособности в верхней части диапазона на период более 24 ч.Госпитализация (90–120 сут) для всей группы. Латентный период 7–20 сут. 50% смертельных исходов в нижней части диапазона с увеличением к верхнему пределу. 100% смертельных исходов в пределах 45 сут.
800–3000В пределах 0,5–1 ч сильные и продолжительные рвота и понос, лихорадкаЗначительное снижение боеспособности. В верхней части диапазона у некоторых период временной полной небоеспособности.Показана госпитализация для 100%. Латентный период менее 7 сут. 100% смертельных исходов в пределах 14 сут.
3000–8000В пределах 5 мин сильные и продолжительные понос и рвота, лихорадка и упадок сил. В верх-ней части диапазона дозы возможны судороги.В пределах 5 мин полный выход из строя на 30–45 мин. После этого частичное восстановление, но с функциональными расстройствами до летального исхода.Госпитализация для 100%, латентный период 1–2 сут. 100% смертельных исходов в пределах 5 сут.
> 8000В пределах 5 мин. те же симптомы, что и выше.Полный, необратимый выход из строя. В пределах 5 мин потеря способности выполнять задачи, требующие физических усилий.Госпитализация для 100%. Латентного периода нет. 100% смертельных исходов через 15–48 ч.

Применение

  • Легирование кобальтом стали повышает её жаропрочность, улучшает механические свойства. Из сплавов с применением кобальта создают обрабатывающий инструмент: свёрла, резцы, и т. п.
  • Магнитные свойства сплавов кобальта находят применение в аппаратуре магнитной записи, а также сердечниках электромоторов и трансформаторов.
  • Для изготовления постоянных магнитов иногда применяется сплав, содержащий около 50 % кобальта, а также ванадий или хром.
  • Кобальт применяется как катализатор химических реакций.
  • Кобальтат лития применяется в качестве высокоэффективного положительного электрода для производства литиевых аккумуляторов.
  • Силицид кобальта — отличный термоэлектрический материал, он позволяет производить термоэлектрогенераторы с высоким КПД.
  • Радиоактивный кобальт-60 (период полураспада 5,271 года) применяется в гамма-дефектоскопии и медицине.
  • 60Со используется в качестве топлива в радиоизотопных источниках энергии.

Способ применения бомбы

Машина Судного дня – так названа физиком придуманная им кобальтовая бомба. Кто создал ее в настоящее время, и создана ли она, вообще, неизвестно. Но желательно, чтобы такого оружия на свете не существовало, так как оно может привести к необратимым трагическим последствиям для человечества. Термоядерное устройство, придуманное Силардом, не требует какой-либо специальных способов доставки к месту назначения.

Любая террористическая организация или страна, угрожающая всему миру, способна будет шантажировать все человечество, угрожая взорвать эту бомбу на своей территории. Конечно, эта страна погибнет, но вместе с ней будут уничтожены и все жители Земли. Это будет достигнуто за счет того, что радиоактивный изотоп будет распространен по всему миру с помощью ветров, атмосферных течений. Понятно, что это произойдет не в одно мгновение, а спустя несколько месяцев, но будет неизбежным.

Как работает нейтронная бомба — особенности ее поражающих факторов

Нейтронная бомба – это разновидность ядерного оружия, основным поражающим фактором которого является поток нейтронного излучения. Вопреки распространенному мнению, после взрыва нейтронного боеприпаса образуется и ударная волна, и световое излучение, но большая часть выделяемой энергии превращается в поток быстрых нейтронов. Нейтронная бомба относится к тактическому ядерному оружию.

Принцип действия бомбы основан на свойстве быстрых нейтронов гораздо свободнее проникать через различные преграды, по сравнению с рентгеновским излучением, альфа, бета и гамма-частицами. Например, 150 мм брони способны удержать до 90% гамма-излучения и только 20% нейтронной волны. Грубо говоря, спрятаться от проникающего излучения нейтронного боеприпаса гораздо сложнее, чем от радиации «обычной» ядерной бомбы

Именно это свойство нейтронов и привлекло внимание военных

Нейтронная бомба имеет ядерный заряд относительно небольшой мощности, а также специальный блок (его обычно изготавливают из бериллия), который и является источником нейтронного излучения. После подрыва ядерного заряда большая часть энергии взрыва преобразуется в жесткое нейтронное излучение. На остальные факторы поражения — ударная волна, световой импульс, электромагнитное излучение — приходится лишь 20% энергии.

Однако все вышесказанное всего лишь теория, практическое применение нейтронного оружия имеет некоторые особенности.

Земная атмосфера очень сильно гасит нейтронное излучение, поэтому дальность действия этого поражающего фактора не больше, чем радиус поражения ударной волны. По этой же причине нет смысла изготавливать нейтронные боеприпасы большой мощности – излучение все равно быстро затухнет. Обычно нейтронные заряды имеют мощность около 1 кТ. При его подрыве происходит поражение нейтронным излучением в радиусе 1,5 км. На дистанции до 1350 метров от эпицентра оно остается опасным для жизни человека.

Кроме того, поток нейтронов вызывает в материалах (например, в броне) наведенную радиоактивность. Если посадить в танк, попавший под действие нейтронного оружия (на дистанциях около километра от эпицентра), новый экипаж, то он получит летальную дозу радиации в течение суток.

Не соответствует действительности распространенное мнение, что нейтронная бомба не уничтожает материальные ценности. После взрыва подобного боеприпаса образуется и ударная волна, и импульс светового излучения, зона сильных разрушений от которых имеет радиус примерно в один километр.

Нейтронные боеприпасы не слишком подходят для использования в земной атмосфере, зато они могут быть весьма эффективны в космическом пространстве. Там нет воздуха, поэтому нейтроны распространяются беспрепятственно на весьма значительные расстояния. Благодаря этому различные источники нейтронного излучения рассматриваются в качестве эффективного средства противоракетной обороны. Это так называемое пучковое оружие. Правда, в качестве источника нейтронов обычно рассматривается не нейтронные ядерные бомбы, а генераторы направленных нейтронных пучков – так называемые нейтронные пушки.

Использовать их в качестве средства поражения баллистических ракет и боевых блоков предлагали еще разработчики рейгановской программы Стратегической оборонной инициативы (СОИ). При взаимодействии пучка нейтронов с материалами конструкции ракет и боеголовок возникает наведенная радиация, которая надежно выводит из строя электронику этих устройств.

После появления идеи нейтронной бомбы и начала работ по ее созданию стали разрабатываться методы защиты от нейтронного излучения. В первую очередь они были направлены на уменьшение уязвимости боевой техники и экипажа, находящегося в ней. Основным методом защиты от подобного оружия стало изготовление специальных видов брони, хорошо поглощающих нейтроны. Обычно в них добавляли бор – материал, прекрасно улавливающий эти элементарные частицы. Можно добавить, что бор входит в состав поглощающих стрежней ядерных реакторов. Еще одним способом уменьшить поток нейтронов является добавление в броневую сталь обедненного урана.

Кстати, практически вся боевая техника, созданная в 60-е – 70-е годы прошлого столетия, максимально защищена от большинства поражающих факторов ядерного взрыва.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий