Устройство и принцип работы ультразвукового датчика (УЗИ)

Как проходит диагностика УЗИ

Ультразвуковое исследование проводится по следующей схеме:

  1. Пациент заходит в кабинет врача;
  2. Врач просит пациента оголить область тела для диагностики;
  3. Врач просит пациента лечь на кушетку, сесть или стоять для успешного проведения исследования;
  4. Врач смазывает датчик УЗИ гелем, обеспечивающим легкое скольжение по коже. При УЗИ с помощью вводимого в тело датчика врач подготавливает эндоскоп и датчик к введению в тело.
  5. Врач начинает водить датчиком УЗИ по телу, анализируя внутренние органы. Или манипулирует датчиком внутри тела пациента для получения нужной картинки.
  6. После процедуры врач просит пациента протереть салфеткой участки кожи от геля и одеться.
  7. Врач предоставляет заключение ультразвукового исследования.

Методики УЗИ

Ультразвуковое исследование проводится в 3 режимах:

  1. A-режим. Метод исследования, дающий одномерное изображение, в котором одна координата это отраженного сигнала от границы сред с разным акустическим сопротивлением, а другая – расстояние до этой границы.
  2. B-режим. Метод исследования, дающий двухмерное изображение, в масштабе реального времени, с возможностью оценить морфологическое состояние.
  3. M-режим. Метод исследования, дающий одномерное изображение, в котором одна это расстояние от датчика до лоцируемой структуры, а другая – время.

Допплерография бывает:

  • Спектральная, дающее представлении о движении подвижных сред;
  • Непрерывная, позволяющая оценить потоки крови, движущиеся с высокой скоростью;
  • Импульсная, позволяющая исследовать кровоток в любой точке;
  • Тканевая, позволяющая оценить миокарда;
  • Цветовое допплеровское картирование, позволяющее исследовать потоки крови в сердце и в относительно крупных сосудах;
  • Энергетическая допплерография, позволяющая оценить васкуляризацию органов и патологических участков;
  • Трёхмерное доплеровское картирование, передающее объемную картину органов в режиме реального времени;
  • Комбинированные варианты, позволяющие получать дополнительную информацию.

Геометрические параметры датчиков.

2.1. Апертура датчика.

Иначе говоря, длина рабочей поверхности датчика. Данный параметр указывается только для линейных и секторных фазированных датчиков. Чем меньше апертура, тем выше плотность линий и лучше прилегание датчика. Купить датчик узи можно в компании “Медфорд”.

Особенно последнее важно при проведении допплеровских исследований. Но большая апертура дает возможность захватить больший участок поверхностного органа.

В итоге, если вы исследуете большей частью поверхностные органы, в частности, щитовидную железу – можно рекомендовать выбор линейного датчика с апертурой приблизительно 45-50 мм. Если же размер датчика не так критичен – остальные факторы на стороне датчиков с меньшей апертурой – порядка 40 мм.

2.2. Радиус кривизны поверхности датчика (или просто радиус).

Этот важнейший параметр конвексных и микроконвексных датчиков часто также называют апертурой, что не совсем верно. Длина сканирующей поверхности таких датчиков для пользователя бесполезна. Датчики с одной и той же длиной поверхности могут иметь абсолютно различные формы и области применения.

Поверхность любого конвексного или микроконвексного датчика представляет собой часть окружности. То есть, если продолжить эту поверхность на бумаге штанген-циркулем, мы получим круг. Его радиус (расстояние от центра до границы) – это и есть тот самый радиус кривизны, который указывается в спецификациях.

Чем больше радиус – тем, разумеется, больше головка датчика, тем он «шире». Микроконвексные датчики имеют радиус кривизны порядка 8-20 мм. Конвексные – 40-60 мм.

Если микроконвекнсый датчик предполагается использовать для исследований мозга новорожденных через родничок или их сердца, лучше выбирать радиус порядка 10-20 мм. Датчик с большей головкой может просто не попасть в родничок или межреберье. Если же речь идет главным образом об исследованиях брюшной полости или пункциях – лучше подойдет датчик с большим радиусом.

Что до конвексных – то датчики с радиусом 60 мм позволяют исследовать пациентов практически любой комплекции. Однако, плотность линии у них не высока. Кроме того, зачастую часть сканирующей поверхности «простаивает». Поэтому в настоящее время наибольшую популярность приобрели датчики с радиусом 50 мм, как наиболее оптимальные.

2.3. Угол обзора датчика.

Данные параметр является, казалось бы, простым. Чем он больше, тем шире сектор сканирования и лучше обзор. Это не так, точнее, верно только для внутриполостных датчиков. Именно выбор неудачных значений угла обзора датчика является причиной наибольшего числа проблем у пользователей ультразвуковых систем. Причем данные промахи совершают не только потенциальные покупатели, но, увы, иногда даже сами производители ультразвуковых систем.

Поясню на примере. Допустим, угол обзора конвексного датчика составляет аж 180 градусов. То есть, его поверхность представляет собой половину круга. Чтобы полностью использовать все элементы данного датчика – необходимо полностью вдавить его в поверхность тела пациента так, что наружу торчать будет только рукоятка. В противном случае датчик будет прилегать к пациенту лишь незначительной частью своей поверхности и сектор сканирования будет небольшим.

По этой причине угол сканирования конвексных датчиков выбирается в диапазоне 60-80 градусов. Оптимальным считается угол 70 градусов. По той же причине углы обзора микроконвексных датчиков, предназначенных для исследований брюшной полости или контроля пункций, выбираются в диапазоне 90-120 градусов.

Заключение.

Для выбора датчика рекомендуется получить как можно больше информации обо всех вариантах, доступных для данной ультразвуковой системы. Если у данной системы поддерживаются как стандартные датчики, так и датчики высокой плотности, лучше остановиться на последних. Разумеется, когда этого позволяет бюджет. После необходимо определиться с центральной частотой датчика и далее подобрать вариант с оптимальными геометрическими параметрами. Рекомендации по их выбору приведены выше.

Вкратце:

  • Оптимальный вариант конвексного датчика – 3,5МГц, R50мм, 70 градусов.
  • Оптимальный вариант линейного датчика – 7,5МГц, 40мм.
  • Оптимальный вариант внутриполостного датчика – 6,5 МГц, R10мм, 180 градусов.
  • Оптимальный вариант микроконвексного датчика для педиатрии – 5 или 6,5 МГц, R10-14мм, 90-120 градусов.

Основные виды устройств

В зависимости от типа ультразвуковых сканеров различают три основных вида датчиков для аппарата УЗИ – секторные, конвексные и линейные. Датчики для аппаратов УЗИ секторного типа работают на частоте от 1,5 до 5 МГЦ. Необходимость в его применении возникает, если требуется получить большее проникновение в глубину и обзор на небольшом участке. Обычно он применяется для обследования сердца и межреберных промежутков.

Конвексные трансдюсоры имеют частоту в 2-7,5 МГЦ, глубина их проникновения достигает 25 см. У них есть одна особенность, которую необходимо обязательно учитывать — ширина получаемого изображения больше размера самого датчика

Это важно для определения анатомических ориентиров. Их достоинством является то, что они равномерно и плотно прилегают к коже пациента

Предназначены такие датчики для обследования органов, которые находятся глубоко — это органы брюшной полости, органы малого таза и мочеполовой системы, а также тазобедренные суставы. При работе с ним необходимо учитывать комплекцию пациента и устанавливать нужную частоту проникновения ультразвуковой волны.

Отдельным типом идут объемные датчики 3D и 4D. Они представляют собой механическое устройство с кольцевым или угловым качанием и вращением. С помощью них на экран выводится посредством сканирование органов, которое потом преобразуется в трехмерное изображение. Устройство 4D позволяет просматривать органы во всех срезовых проекциях.

Датчики для аппаратов УЗИ линейного типа имеют частоту 5-15 МГЦ, глубина их проникновения достигает 10 см. За счет такой высокой частоты можно получить высококачественное изображение на экране. При работе с линейными датчиками происходит искажение изображения по краям. Это вызвано тем, что он неравномерно прилегает к коже пациента. Они предназначены для ультразвукового обследования органов, которые расположены на поверхности. Это молочные железы, суставы и мышцы, сосуды, щитовидная железа.

Другие типы датчиков УЗИ

На рынке существует еще несколько видов ультразвуковых датчиков УЗИ. Такие как:

Карандашный датчик УЗИ

Карандашные преобразователи, также называемые CW-доплеровскими зондами, их используют для замера кровотока, а также скорости звука в крови.

Этот зонд имеет небольшой размер и использует низкую частоту (обычно 2 МГц– 8 МГц).

Эндокавитальный датчик УЗИ

Кроме того, существует эндокавитарный тип ультразвукового датчика.

Эти зонды дают вам возможность осуществлять внутренние обследования пациента.

Поэтому они предназначены для установки в определенные отверстия корпуса.

Эндокавитальный датчик УЗИ

Эндокавитальные преобразователи включают эндовагинальные, эндоректальные и эндокавитальные преобразователи.

Как правило, они имеют небольшие следы и частота их колеблется в диапазоне 3,5 МГц – 11,5 МГц.

Чреспищеводный датчик УЗИ

Кроме того, имеется чреспищеводный (ТРОЙНИКОВЫЙ) зонд.

Как и ранее упомянутые зонды, он имеет небольшой размер и применяется для внутренних обследований.

Он часто используется в кардиологии, чтобы получить качественные изображения УЗИ сердца через пищевод.

Частота средняя, в диапазоне 3мгц-10МГц.

Как подготовиться к УЗИ

Если пациент ответственно подошел к подготовке, врач сможет получить более точную информацию о состоянии тканей или органов.

Особенности подготовки зависят от того, какой орган будет обследован:

  • Если предстоит УЗИ жировой или мышечной ткани, суставов или сухожилий, в большинстве ситуаций подготовку не проводят.
  • Если будет проводиться исследование в области шеи, за 1 сутки следует отказаться от чая, кофе, алкоголя. Если пациент курит, воздержаться от употребления никотиносодержащих изделий на протяжении четырех часов до процедуры.
  • Перед УЗИ брюшной области и органом малого таза необходимо следовать диете, избегать приема некоторых лекарственных препаратов. В определенных случаях может потребоваться прием назначенных врачом фармакологических средств, голодная выдержка на протяжении от 8 ч до 12 часов или очищающая клизма.

Что делать или не делать перед манипуляцией расскажет врач на предварительном приеме, но если ситуация экстренная, предварительную подготовку не проводят.

Как проходит осмотр с помощью прибора

Лучшие материалы месяца

  • Коронавирусы: SARS-CoV-2 (COVID-19)
  • Антибиотики для профилактики и лечения COVID-19: на сколько эффективны
  • Самые распространенные «офисные» болезни
  • Убивает ли водка коронавирус
  • Как остаться живым на наших дорогах?

Решение о возможности проведения ультразвукового обследования и конкретного метода ультразвуковой диагностики принимает врач ультразвуковой диагностики с учетом обоснованности назначения, наличия медицинских показаний (противопоказаний), риска осложнений.

При выявлении патологии врач расширяет границы анатомической области, подлежащей ультразвуковому исследованию, указав причину расширения и результат исследования в протоколе.

Во время обследования пациент лежит на кушетке, на его кожу в области исследования наносится прозрачный гель, после чего врач, перемещая специальный датчик, видит на мониторе изображение исследуемых внутренних органов и систем.

Гинекологическое УЗИ проводится трансабдоминальным доступом при наполненном мочевом пузыре, а при трансвагинальном доступе – при пустом мочевом пузыре. УЗИ предстательной железы проводится трансабдоминальным доступом при наполнении мочевого пузыря и трансректальным доступом при пустом мочевом пузыре.

Принцип действия

Ультразвуковой дальномер определяет расстояние до объектов точно так же, как это делают дельфины или летучие мыши. Он генерирует звуковые импульсы на частоте 40 кГц и слушает эхо. По времени распространения звуковой волны туда и обратно можно однозначно определить расстояние до объекта.

В отличие от инфракрасных дальномеров, на показания ультразвукового дальномера не влияют засветки от солнца или цвет объекта. Но могут возникнуть трудности с определением расстояния до пушистых или очень тонких предметов. Поэтому высокотехнологичную мышеловку выполнить на нём будет затруднительно.

При отражении звука от препятствия мы слышим эхо. Летучая мышь использует отражение ультразвуковых волн для полётов в темноте и для охоты на насекомых. По такому же принципу работает эхолот, с помощью которого измеряется глубина воды под днищем корабля или поиск рыбы.

Принцип передачи и приема ультразвуковой энергии лежит в основе многих очень популярных ультразвуковых датчиков и детекторов скорости. Ультразвуковые волны являются механическими акустическими волнами, частота которых лежит за пределами слышимости человеческого уха — более 20 кГц. Однако сигналы этих частот воспринимаются некоторыми животными: собаками, кошками, грызунами и насекомыми. А некоторые виды млекопитающих, таких как летучие мыши и дельфины, общаются друг с другом ультразвуковыми сигналами.

Технические спецификации и особенности продукта:

    • Измерение расстояния в диапазоне от 1 до 250 см
    • Точность измерения до +/- 1 см
    • Передняя подсветка в виде красного кольца горит постоянно при передаче сигнала и мигает при прослушивании эфира
    • Если ультразвуковой сигнал распознан, датчик возвращает логическое значение «Истина»
    • Автоматическая идентификация производится программным обеспечением микрокомпьютера EV3

Рис. 1 Ультразвуковой датчик Lego Mindstorm EV 3  (стоимость вместе с внутренним микроконтроллером и микросхемами усиления сигнала $50, при себестоимости $5)

Рис. 2  Схема ультразвукового датчика Lego Mindstorm EV 3 (ultrasonic sensor hardware schematics) построена на микроконтроллере STM8S103F3

  • Введение в микроконтроллеры stm8
  • Схема центрального микроконтроллера  LEGO MINDSTORMS EV3 programmable brick main hardware schematics

Рис. 3 Ультразвуковые излучатель  AW8T40 и приемник AW8R40 ультразвукового датчика Lego Mindstorm EV 3

Что такое ультразвуковой сканер

Ультразвуковой аппарат (ультразвуковой сканер) – это инструмент диагностики, оснащенный датчиком, который испускает и принимает звуковые волны высокой частоты. Принцип его работы основан на использовании высокочастотных звуковых волн для получения изображений внутренних структур организма. В связи с отсутствием ионизирующего излучения, ультразвуковое сканирование разрешено к проведению во время беременности и используется для дородового наблюдения.

Ультразвуковое сканирование применяется в акушерской практике для оценки развития плода и выявления возможных патологических изменений.

Ультразвуковой контроль помогает при выполнении определенных видов манипуляций: пункции, внутрисуставные инъекции, биопсия. Также существуют специальные интраоперационные датчики, которые используют во время хирургических операций.

Врач УЗИ – специалист, который проводит ультразвуковое сканирование органов и систем для выявления их изменений. Полученное изображение врач изучает в режиме реального времени, фиксирует необходимые данные в протоколе исследования и выдает заключение. Если в результате обследования выявляются патологические изменения, специалист ультразвуковой диагностики делает заключение о том, какому заболеванию они могут соответствовать. Окончательный диагноз ставит уже лечащий врач пациента.

Ультразвуковые волны легко проходят через мягкие ткани и жидкости и отражаются от более плотных структур. Таким образом, за счет анализа изменения акустического сопротивления различных тканей, на экране ультразвукового аппарата получается смоделировать изображение внутренних органов. Основным элементом ультразвукового аппарата является преобразователь, который с помощью пьезоэлектрического кристалла преобразует электрический сигнал в звук высокой частоты (0,5—15 МГц). Эта часть в ультразвуковых аппаратах называется, трансдюсером или просто датчиком. Сканирование обеспечивается последовательной генераций ультразвуковых волн и регистрацией эхо-сигналов с разных направлений в пределах диаграммы направленности датчика. Совокупный анализ принятых эхо-сигналов позволяет построить акустическое изображение глубинных тканей и органов на экране монитора УЗИ-аппарата. При этом яркость каждой точки находится в прямой зависимости от интенсивности эхо-сигнала. Изображение на экране обычно представлено оттенками серого цвета или цветной палитрой, отражающими акустическую структуру тканей. На аппаратах с серой шкалой камни выглядят ярко-белыми, а образования, содержащие жидкость, например, кисты – черными. Чем выше частота излучения датчика, тем выше разрешающая способность ультразвукового аппарата, так у моделей экспертного класса с 18-20 МГц датчиками, разрешение достигает 0,7 мм. Использование мультичастотных датчиков с широкой полосой рабочих частот дает существенное увеличение разрешающей способности в ближней и средней (по глубине) зоне. Модификация цифрового широкополосного сканирования — многолучевое сканирование, позволяет более контрастно выделять исследуемые элементы и структуры.

Для диагностических целей сигнал ультразвукового сканера обычно составляет от 2 до 18 мегагерц (МГц). Выбор датчика для каждого исследования проводится с учетом глубины и характера положения органа.

Ультразвуковые датчики с более высокой частотой сканирования позволяют получать изображение исследуемой зоны с высокой разрешающей способностью. Глубина проникновения ультразвука в ткани организма обратно пропорциональна его частоте. Поэтому высокочастотные датчики используются в основном для исследования поверхностно расположенных структур — щитовидной железы, молочных желёз, небольших суставов и мышц, а также для исследования сосудов. Для исследования глубоко расположенных органов (органы брюшной полости и забрюшинного пространства, мочеполовой и репродуктивной систем) обычно используются датчики с меньшей частотой, но большей глубиной сканирования.

Вот некоторые ключевые моменты касающиеся ультразвукового сканирования:

  • данное сканирование безопасно и широко используется в медицинской практике;
  • разрешается проведение во время беременности;
  • применяется для диагностики и контроля эффективности лечения;
  • большинство видов ультразвуковой диагностики не требуют специальной подготовки;
  • проводится за относительно небольшой промежуток времени.

Разрешение и проникновение

Выбранная глубина сканирования позволяет просматривать в интересующем диапазоне глубины. Факторы, участвующие в возможности визуализации, включают размер активной апертуры (скрытый для пользователя, обычно используется низкое значение f [F#; фокусная глубина/ширина активной апертуры]), фокусную глубину передачи и доступные настройки регулировки усиления по времени. Проникновение(*проникающая способность) — это минимальная глубина сканирования, при которой виден электронный шум, несмотря на оптимизацию доступных элементов управления (обычно при самой глубокой настройке фокуса передачи и максимальном усилении), а электронный шум остается на фиксированной глубине даже при боковом перемещении массива. Проникновение в первую очередь определяется центральной частотой датчика: чем выше частота, тем меньше проникновение, потому что больше поглощение ультразвуковой волны, проходящей через ткань.

Полезным первым приближением для оценки глубины проникновения (dp) для данной частоты является dp = 60/f см-МГц, где f задается в мегагерцах. Таким образом, можно ожидать от датчика с центральной частотой 10 МГц проникновения сигнала на глубину 6 см. Как отмечалось ранее, коэффициент поглощения (потери акустической мощности на единицу глубины) является функцией частоты и изменяется от ткани к ткани (значения для мягких тканей варьируют от 0,6 до 1,0 дБ/см-МГц). Более общим термином, описывающим акустические потери, является коэффициент затухания, который включает в себя дополнительные потери из-за рассеяния и диффузии и, следовательно, всегда больше коэффициента поглощения. Коэффициент затухания сильно зависит от пациента и акустического пути.

Чтобы оптимизировать разрешение изображения, производители работали над увеличением частоты изображений для различных типов исследований. Например, около 30 лет назад живот смотрели датчиками с частотой 2,25 МГц, тогда как сегодня это число чаще составляет 3,5 МГц, а частоты некоторых акушерских и гинекологических датчиков достигают 5 МГц. Аналогичным образом, в последнее десятилетие наблюдается устойчивый рост ультразвуковой визуализации молочной железы.

Преимущества и недостатки ультразвуковых датчиков

Преимущества:

  • ультразвуковые передатчики легко устанавливаются на поверхности или на резервуары, содержащие жидкость;
  • настройка проста, и эти устройства с возможностью бортового программирования могут быть сконфигурированы за считанные минуты;
  • поскольку нет контакта со средой и движущихся частей, устройства практически не требуют технического обслуживания;
  • поскольку устройство бесконтактно, измерение уровня не зависит от изменений плотности жидкости;
  • изменения температуры изменят скорость ультразвукового импульса, но встроенный температурный датчик автоматически исправит погрешности при вычислении;
  • изменения технологического давления не влияют на измерение.

Недостатки:

  • ультразвуковые датчики рассчитаны на то, что импульс не будет затронут во время его полета, поэтому следует избегать жидкостей, образующих тяжелые газы или слои пара;
  • поскольку для прохождения импульса требуется воздух, применение ультразвукового-датчика в вакууме невозможно;
  • конструкционные материалы прибора обычно ограничивают температуру работы, примерно до 70 C;
  • приборы можно использовать на силосохранилищах, содержащих сухие продукты, такие как гранулы, зерна или порошки, но необходимо учитывать такие факторы, как угол поверхности, запыленность и расстояние.

Пренатальная диагностика, акушерство и гинекология

УЗИ активно используется для обследования женских внутренних половых органов, а также исследования плода при беременности. В акушерстве востребованности ультразвукового исследования особенно высока, поскольку звуки из матки легко зарегистрировать, благодаря чему можно диагностировать нарушения в развитии плода.

Общие сведения о процедуре

УЗИ является одной из наиболее доступных мер диагностики. Она считается абсолютно безвредной и зачастую бесплатной. Ультразвуковое исследование не имеет возрастных ограничений, проводится на считанные минуты, в большинстве случаев не требует предварительной подготовки.

Процедура проводится при помощи датчика, который фиксирует ультразвуковые волны и отображает их на мониторе. Во время проведения УЗИ пациент ничего не чувствует. Перед началом осмотра необходимо оголить исследуемый участок тела, на него наносится специальный гель, который обеспечивает более близкий контакт органов с датчиком и предотвращает попадание воздуха между ним и покровом эпидермиса.

УЗИ позволяет диагностировать:

  • наличие новообразований;
  • скорость кровотока;
  • диаметр сосудов;
  • форму и структуру органов;
  • наличие инородных тел;
  • функциональное состояние органов.

Разновидности трансдюсеров

Помимо трех основных типов применяются следующие датчики для УЗИ сканеров:

  1. Микроконвексный трансдюсер – разновидность конвексного, предназначен для использования в педиатрической практике. Посредством него производится обследование тазобедренных суставов и органов брюшной полости, мочеполовой системы.
  2. Биплановые – позволяют получить изображения органов в продольном и поперечном срезе.
  3. Секторный фазированный трансдюсер – предназначен для применения в области кардиологии, для ультразвукового исследования головного мозга. Он снабжен фазированной решеткой, что дает возможность исследовать труднодоступные области.
  4. Катетерные трансдюсеры — предназначены для введения в труднодоступные места – сосуды, сердце.
  5. Внутриполостные – это ректальные и вагинальные, а также ректально-вагинальные типы трансдюсеров, применяемые в акушерстве, урологии и гинекологии.
  6. Карандашные — используются для ультразвукового исследования вен и артерий конечностей и шеи.
  7. Видеоэндоскопические – эти устройства представляют собой объединение трех в одном – ультразвука, гастрофиброскопа и бронхофиброскопа.
  8. Лапароскопические – это трансдюсоры в форме тонкой трубки, имеющие на конце излучатель. В них конец может изгибаться как в одной плоскости, так и в двух плоскостях. Имеются модели, в которых конец не изгибается. Все они используются при проведении лапароскопии. Управляются они с помощью специального джойстика. Такие модели подразделяются также на линейные, боковые, конвексные боковые и фазированные с прямым обзором.

Кроме того, в практике ультразвукового исследования применяются матричные датчики с двухмерной решеткой. Они бывают полуторомерными и двухмерными. Полуторомерные позволяют получить максимальное разрешение по толщине.

С помощью двухмерного устройства можно получить изображение в качестве 4D. В то же время они визуализируют изображение на экране в нескольких проекциях и срезах.

Типы датчиков

Чтобы классифицировать датчики, можно использовать аббревиатуры для их описания. В частности, M — означает механическое сканирование; E — электронное сканирование; и F — фиксированное — отсутствие сканирования. Направление сканирования является либо линейным (L) вдоль оси x, либо угловым ( < ), либо криволинейным (C), либо комбинированным (более подробное описание их приведено ниже).

Согласно приведенному выше описанию, каждый датчик может быть закодирован по типу сканирования и плоскостям. Например, линейная матрица L связана с электронным линейным сканированием, E в плоскости xz и фиксированной фокусировкой F в плоскости yz; поэтому полученные обозначения можно сократить как ELxz и Fyz.

Криволинейный или конвексный массив/датчик аналогичен линейному массиву за исключением того, что элементы находятся на криволинейной, а не плоской поверхности, и соответственно отличие в направлении сканирования — C, т.е. ECxz и Fyz. Этот формат, подобный по форме сектору или куску пирога с укусом, взятым из его вершины, часто описывается углом поля зрения (FOV), определяющим его боковую угловую протяженность.

Поскольку важность 3D-визуализации неуклонно растет, целесообразно обсудить ее более подробно. Для трехмерного изображения сканируется объем вместо плоскости, сканирование может быть электронным и обычно угловым в обоих направлениях, так что сканируемый объем имеет пирамидальную форму

В этом случае электронная фокусировка достигается в обеих плоскостях с угловым сканированием, поэтому — E

В качестве альтернативы, для достижения экономически эффективного 3D-изображения, линейные или конвексные массивы могут быть отсканированы механически вокруг оси x в плоскости yz. В этих случаях массивы перемещаются в заполненные жидкостью акустически прозрачные камеры. Например, линейная матрица (обычно типа А) поворачивается вокруг оси z для получения серии плоскостных изображений и таким образом мы получаем механический 3D датчик типа F. Аналогично, изогнутая или выпуклая матрица (обычно типа C) поворачивается вокруг оси для получения серии плоскостных изображений и таким образом мы получаем механический 3D датчик типа G.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий